2月16日、パナソニックホールディングス(パナソニックHD)は、カリフォルニア大学 バークレー校、南京大学、北京大学の研究者らと、画像認識精度を著しく低下させる雨や雪、霧などを画像から除去することで、画像認識精度を向上させる悪天候除去AIを共同開発したと発表した。本技術は、多重悪天候画像に対する画像認識およびセグメンテーションタスクにおいて、パラメータを72%以上、推論時間を39%節約しながら、従来法より認識精度を向上させた。
屋外で取得される画像は天候の影響をうけるため雨、雪、霧などの悪天候下では、物体の見えが大きく変化し、認識精度が著しく低下する。昨今、全天候で利用できる実用的なAIを実現するために雨、雪、霧などを画像から除去する「悪天候除去」と呼ばれるタスクが注目を集めているが、計算量の多さがネックとなっていた。
パナソニックは今回、異なる天候のパラメータを重みで表現することで、少ないパラメータ数で高精度に天候の影響を除去し、一つのモデルで、複数種類の天候とタスクに対応できる技術を開発。本技術は、車載センサにおける危険検知やセキュリティカメラなど全天候で高精度な画像認識が必要とされる様々な場面での活用が期待される。
本技術は先進性が国際的に認められ、AI・機械学習技術のトップカンファレンスであるThe 38th Annual AAAI Conference on Artificial Intelligence(AAAI 2024)に採択された。